
SFM98 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

Form Approved
OMB NO. 0704-0188 REPORT DOCUMENTATION PAGE

-sinetien oi intomwan. meiuomo «ugg«ition« lor r«auonq mil Ouro««. to »»•ininqion nuaauinwi same». "''"J"*"-'* ~„,_, „yjm.nipr
;a»!i H.q°wiv Su*»T204 A.iJnjlotvVA 22202-4302. «no to in» OH.c o. M«n»Q.m«nt «na Buaq«. Paorwon. Hxluciion P'onet .0704-016 18». Wiininqion. OC 20S03.

1 AGENCY USE ONLY [Leave Dlankt 2. REPORT DATE
May 1998

3. REPORT TYPE AND DATES COVERED

Technical - 98-04

4. TITLE AND SUBTITLE

Pattern Classification Using Genetic Algorithms:
Determination of H
6. AUTHORIS)

>. Bandyopadhyay, C.A. Murthy and S.K. Pal

7 =CRFORMING ORGANIZATION NAMES(S) AND AODRESS(ES)
Center for Multivariate Analysis
Dept. of Statistics
U7 Thomas Bldg.
?enn State University
Jniversity Park, PA 16802

5. FUNDING NUMBERS

DAAH04-96-1-0082

8. PERFORMING ORGANIZATION
REPORT NUMBER

3 SPONSORING / MONITORING AGENCY NAMEiSi AND ADDRESS(ES)

l.'.S. Armv Research Office
PO Box'PZl 1
Research Triangle Park. NC 27709-2211

11. SUPPLEMENTARY NOTES

10 SPONSORING /' MONITORING
AGENCY REPORT NUMBER

fru3sstf.a<?-*A

, aUrrLCIVitiiinni i^w • *-.w

The views opinions and/or findings contained in this report are those of the author* s) and should ™^ construed as
an oEl Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. ABSTRACT (Maxim

12 B. DISTRIBUTION CODE

CD
(D
(/>

>
<
22.
5T

(D

O o

33
(D
■Ö

O a c o
(0
Q.

O
3

*"" A methodology based on the concept of variable string length GA

(VGA) is developed for determining automatically the number of hyper-

planes for modeling the class boundaries in GA-classifier. The genetic

operators and fitness function are newly defined to take care of the vari-

ability in chromosome length. It is proved that the said method is able

to arrive at the optimal number of misclassifications after sufficiently large

number of iterations, and will need minimal number of hyperplanes for this

purpose. Experimental results on different artificial and real life data sets

demonstrate that the classifier, using the concept of variable length chromo-

some, can automatically evolve an appropriate value of H, and also provide

performance better than those of the fixed length version. Its comparison

with another approach using VGA is provided.

14 SUBJECT TERMS Genetic algorithms, optimum hyperplane fitting,
speech recignition, variable string length

17 SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER IF PAGES

22
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500
Standard Form 298 (Rav. 2-89)
PfMentMd by ANSI Std. 239-18
298-102

r

PATTERN CLASSIFICATION USING GENETIC

ALGORITHMS: DETERMINATION OF H

S. Bandyopadhyay, C.A. Murthy and S.K. Pal

Technical Report 98-04

May 1998

Center for Multivariate Analysis
417 Thomas Building
Penn State University

University Park, PA 16802

■>o

Research work of authors was partially supported by the Army Research Office under
Grant DAAHO4-96-1-0082. The United States Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright notation
hereon.

Pattern Classification Using Genetic

Algorithms : Determination of H

S. BANDYOPADHYAY, C. A. MURTHY and SANKAR K. PAL

Machine Intelligence Unit

Indian Statistical Institute

203 B.T. Road

Calcutta 700 035, INDIA.

e-mail : sankar@isical.ernet.in

Abstract

A methodology based on the concept of variable string length GA

(VGA) is developed for determining automatically the number of hyper-

planes for modeling the class boundaries in GA-classifier. The genetic

operators and fitness function are newly defined to take care of the vari-

ability in chromosome length. It is proved that the said method is able

to arrive at the optimal number of misclassifications after sufficiently large

number of iterations, and will need minimal number of hyperplanes for this

purpose. Experimental results on different artificial and real life data sets

demonstrate that the classifier, using the concept of variable length chromo-

some, can automatically evolve an appropriate value of H, and also provide

performance better than those of the fixed length version. Its comparison
with another approach using VGA is provided.

Keywords : Genetic algorithms, optimum hyperplane fitting, speech recogni-
tion, variable string length.

1 Introduction

Genetic Algorithms (GAs) (Goldberg, 1989) are randomized search and opti-

mization techniques guided by the principles of evolution and natural genetics.

They are efficient, adaptive and robust search processes, producing near op-

timal solutions and have a large amount of implicit parallelism. Application

of GA to various pattern recognition problems is described in (Pal and Wang,

1996; Gelsema, 1995). One such application for designing a classifier is pro-

vided in (Bandyopadhyay et. al., 1995) where the searching capability of GA

is exploited for the placement of a number of hyperplanes, say H, for approxi-

mating the decision boundaries. The method involves encoding the parameters

of the hyperplanes in binary strings called chromosomes, in the feature space

that yields minimum misclassification. It was demonstrated in (Bandyopad-

hyay et. al, 1995) that the GA based classifier, subsequently referred to as the

GA-classifier, can be well applied to a variety of data sets having both non-

overlapping, non-convex, and overlapping classes. Its recognition scores were

found to be comparable to, sometimes better than, those of k-NN rule (for differ-

ent values of k), Bayes maximum likelihood classifier and multilayer perceptron
based classifier.

Note that estimation of a proper value of H is crucial for a good performance

of the algorithm. Since this is difficult to achieve, one may frequently use a

conservative value of H while designing the classifier. This first of all leads

to the problem of an overdependence of the algorithm on the training data,

especially for small sample size. In other words, since a large number of hyper-

planes can readily and closely fit the classes, this may provide good performance

during training but poor generalization capability. Secondly, a large value of

H unnecessarily increases the computational effort, and may lead to the pres-

ence of redundant hyperplanes in the final decision boundary. (A hyperplane is

termed redundant if its removal has no effect on the classification capability of
the GA-classifier.)

In order to overcome these limitations a method has been described here to auto-

matically evolve the value of if as a parameter of the problem. For this purpose,

the concept of variable length strings in GA has been adopted. Unlike the con-

ventional GA, here the length of a string is not fixed. Crossover and mutation

operators are accordingly defined. A factor has been incorporated into the fit-

ness function that rewards a string with smaller number of misclassified samples

as well as smaller number of hyperplanes. Let the classifier so designed utilizing

the concept of variable string lengths be called VGA-classifier. Issues of min-

imum misclassification error and minimum number of required hyperplanes are

theoretically analyzed under limiting conditions.

One may note the difference between the proposed classification method and the

one described in (Srikanth et al., 1995), also using the similar concept of variable

length strings. In the latter method, the decision boundary was modeled by

a variable number of ellipsoids which have a higher degree of complexity than

hyperplanes. The fitness function of the string was determined from the number

of misclassified samples only. Thus there was no incentive for reducing the

number of ellipsoids although a factor favouring more compact, ellipsoids was

introduced.

The experimental results on speech data, Iris data and two artificially generated

data sets show that the proposed classifier is able to reduce the number of hyper-

planes significantly while retaining the classification performance of the previous

fixed length GA-classifier. A comparison with the classifier implemented using

the operators of Srikanth et al. (1995) is also provided.

2 Genetic Algorithm with Variable String

Length and the Classification Criteria

The concept of variable string lengths in genetic algorithms has been used earlier

in (Smith 1980) to encode sets of fixed length rules. Messy genetic algorithm

(Goldberg et al., 1989) also uses the concept of variable string lengths for con-

structing the chromosomes which may be under or over specified. Use of GA

with variable string length has been made in (Harp and Samad, 1992) for encod-

ing variable number of fixed length blocks in order to construct layers of a neural

network, and in (Maniezzo, 1994) for the genetic evolution of the topology and

weight distribution of neural networks.

As mentioned in Section 1, the G'A-classifier (Bandyopadhyay et al., 1995)

with fixed H, and consequently fixed string length is rigid, and therefore has

several limitations like overfitting of the training data and presence of redundant

hyperplanes in the decision boundary when a conservative value of H is used.

To overcome these limitations, the use of variable length strings representing

variable number of hyperplanes for modeling optimally the decision boundary

therefore seems natural and appropriate. This would eliminate the need for fix-

ing the value of H, evolving it adaptively instead; thereby providing an optimal

value of H.

It is to be noted that in the process, if we aim at reducing the number of mis-

classified points only, as was the case for fixed length strings, then the algorithm

may try to fit as many hyperplanes as possible for this purpose. This, in turn,

would obviously be harmful with respect to the generalization capability of the

classifier. Thus the fitness function should be defined in such a way, maximiza-

tion of which ensures primarily the minimization of the number of misclassified

samples and also the requisite number of hyperplanes.

While incorporating the concept of variable string lengths, one may note that

it is necessary to either modify the existing genetic operators or introduce new

ones. In order to utilize the existing operators as much as possible, a new

representation scheme involving the consideration of the ternary alphabet set

{0, 1, # }, where # represents the don't care position, is used. For applying the

conventional crossover operator, the two strings, which may now be of unequal

lengths, can be made of equal length by appropriately padding one of them

with #s. However, some extra processing steps have to be defined in order

to tackle the presence of #s in the strings. Similarly, the mutation operator

needs to be suitably modified such that it has sufficient flexibility to change the

string length while retaining the flavour of the conventional operator. (As will

be evident in the next section, the genetic operators are defined in such a way

that the inclusion of # in the strings does not affect their binary characteristics

for encoding and decoding purposes.) The classifier thus formed using variable

string length GA (or VGA) is referred to as the VGA-classifier.

Therefore the objective of the VGA-classifier is to place an appropriate number

of hyperplanes in the feature space such that it, first of all, minimizes the number

of misclassified samples and then attempts to reduce the number of hyperplancs.

Using variable length strings enables one to check automatically and efficiently,

various decision boundaries consisting of different number of hyperplanes in

order to attain the said criterion. The description of such a classifier is given in

the next section.

3 Description of VGA-classifier

As evident from the previous section, although the sequence of the different

operations for GA (as shown in Fig. 1) is applicable to VGA too, the operators

themselves are newly defined for VGA. They are described here.

3.1 Chromosome Representation and Population Initial-
ization

The chromosomes are represented by strings of 1, 0 and # (don't care), encoding

the parameters of variable number of hyperplanes. In 7^, N parameters are

required for representing one hyperplane. These are N — 1 angle variables,

angle\,..., anglel
N_x, indicating the orientation of hyperplane i (i = 1,2,..., H

when H hyperplanes are encoded in the chromosome), and one perpendicular

distance variable, pl indicating its perpendicular distance from the origin. Let

Hmax represent the maximum number of hyperplanes that may be required to

model the decision boundary of a given data set. It is specified a priori. Let

the angle and perpendicular distance variables be represented by b\ and b% bits

respectively. Then lH, the number of bits required to represent a hyperplane

and Zmai, the maximum length that a string can have are

l„ = (JV-l)*&i+&2 (1)

''max == tlrnax * '■H \&)

respectively.

Let string i represent H hyperplanes. Then its length Zj is

li=Hi* lH.

Initial population is created in such a way that the first and the second strings

encode the parameters of Hmax and 1 hyperplanes respectively to ensure suf-

ficient diversity in the population. For the remaining strings, the number of

hyperplanes, Hi, is generated randomly in the range [1, Hmax], and the k bits

are initialized randomly to Is and Os.

3.2 Fitness Computation

As mentioned in Section 2, the fitness function (which is maximized) is defined

in such a way that

i : a string with smaller value of misclassifications is considered to be fitter

than a string with a larger value, irrespective of the number of hyperplanes

i.e., it first of all minimizes the number of misclassified points, and then

ii : among two strings providing the same number of misclassifications, the

one with the smaller number of hyperplanes is considered to be fitter.

The number of misclassified points for a string i encoding Hi hyperplanes is

found as follows : Let the Hi hyperplanes provide Mi distinct regions which

contain at least one training data point. (Note that although Mi < 2Hi, in reality

it is upper bounded by the size of the training data set.) For each such region

and from the training data points that lie in this region, the class of the majority

is determined, and the region is considered to represent (or be labeled by) the

said class. Points of other classes that lie in this region are considered to be

misclassified. The sum of the misclassifications for all the Mj regions constitutes

the total misclassification missi associated with the string. Accordingly, the

fitness of string i may be defined as

fiti = (n - missi) - aH{ 1 < Hi < Hmax (3)

= 0, otherwise, (4)

6

where n = size of the training data set and a = r^—.

Let us now explain how the first criterion is satisfied: Let two strings i and j

have number of misclassifications missi and missj respectively, and number of

hyperplanes encoded in them be H{ and Hj respectively. Let misst < missj

and Hi > Hj. (Note that since the number of misclassified points can only be
integers, missj > missi + 1.) Then,

fiti = (n - mis Si) — aHi,

fitj = (n - missj) — aHj.

The aim now is to prove that fiti > fitj, or that fiti - fitj > 0. From the
above equations,

fiti - fitj = missj - missi - <*(#; - Hj).

If Hj = 0, then fitj = 0 (from Eq. 4) and therefore fitt > fitj. When 1 <

Hj < Hmax, we have «(#< - Hj) < 1 since (Hi - Hj) < Hmax. Obviously,

missj - missi > 1. Therefore fiti - fitj > 0, or, fiti > fitj.

The second criterion is also fulfilled since fit{ < fitj when missi = miss, and
Hi > Hj.

3.3 Genetic Operators

Among the operations of selection, crossover and mutation, the selection oper-

ation used here may be one of those used in conventional GA, while crossover

and mutation need to be newly defined for VGA. These are now described in
detail.

Crossover : Two strings, i and j, having lengths k and lj respectively are

selected from the mating pool. Let k < lj. Then string i is padded with #s

so as to make the two lengths equal. Conventional crossover like single point

crossover, two point crossover (Goldberg, 1989) is now performed over these two

strings with probability /ic. The following two cases may now arise :

• All the hyperplanes in the offspring are complete. (A hyperplane in a

string is called complete if all the bits corresponding to it are either defined

(i.e., Os and Is) or #s. Otherwise it is incomplete.)

• Some hyperplanes are incomplete.

In the second case let u = number of defined bits (either 0 or 1) and t = total

number of bits per hyperplane = (N -l)*b1 + b2 (from Eq. 1). Then, for each

incomplete hyperplane, all the #s are set to defined bits (either 0 or 1 randomly)

with probability j. In case this is not permitted, all the defined bits are set to #.

Thus each hyperplane in the string becomes complete. Subsequently, the string

is rearranged so that all the #s are pushed to the end, or in other words all

the hyperplanes are transposed to the beginning of the strings. The information

about the number of hyperplanes in the strings is updated accordingly.

Mutation : In order to introduce greater flexibility in the method, the mutation

operator is defined in such a way that it can both increase and decrease the

string length. For this, the strings are padded with #s such that the resultant

length becomes equal to lmax. Now for each defined bit position, it is determined

whether conventional mutation (Goldberg, 1989) can be applied or not with

probability /zm. Otherwise, the position is set to # with probability /xmi. Each

undefined position is set to a defined bit (randomly chosen) according to another

mutation probability (j,m.2. These are described in Fig. 2.

Note that mutation may result in some incomplete hyperplanes, and these are

handled in a manner, as done for crossover operation. For example, the oper-

ation on the defined bits, i.e., when k < Z4 in Fig. 2, may result in a decrease

in the string length, while the operation on #s, i.e., when k > U in the figure,

may result in an increase in the string length. Also, mutation may yield strings

having all #s indicating that no hyperplanes are encoded in it. Consequently,

this string will have fitness = 0 and will be automatically eliminated during

selection.

Note that the operations defined here for designing the VGA-classifier are

different from those used in (Smith 1980; Goldberg et al., 1989; Harp and Samad,

1992; Maniezzo 1994, Srikanth et al., 1995). *

8

As in conventional GAs, the operations of selection, crossover and mutation are

performed here over a number of generations till a user specified termination

condition is attained. Elitism is incorporated such that the best string seen

upto the current generations is preserved in the population. The best string of

the last generation, thus obtained, along with its associated labeling of regions

provides the classification boundary of the n training samples. After the design

is complete, the task of the classifier is to check, for an unknown pattern, the

region in which it lies, and to put the label accordingly.

4 Issues of Minimum miss and H

In this section we prove that the above mentioned VGA-classifier will provide

the minimal misclassification error during training, for infinitely large number

of iterations. At the same time it will require minimum number of hyperplanes
in doing so.

For proving this we use the result of (Bhandari et al., 1996), where it has been

established that for an infinitely large number of iterations, an elitist model of

GA will surely provide the optimal string. In order to prove this convergence

they assumed that the probability of going from any string to the optimal one

is always greater than zero, and the probability of going from a population

containing the optimal string to one not containing the optimal one is zero.

Since the mutation operation and elitism of the proposed VGA ensure that both

these conditions are met, the result of (Bhandari et al., 1996), regarding the

convergence to the optimal string is valid for VGA as well.

Let us now consider the fitness function for string i (Eq. 3). Maximization of

the fitness function means minimization of

missi + aHi = err^ say

where a = j^-. Let us call this the error function (erri).

Let for any size of the training data set (n), the minimum value of the error

function as obtained by the VGA-classifier be

errmin = miss° + aH°

after it has been executed for infinitely large number of iterations. Then accord-

ing to Bhandari et al. (1996), this corresponds to the optimal string. Therefore

we may write

miss0 + aH° < miss + aH, V miss, H. (5)

Theorem 1 : For any value of H, 1 < H < Hmax, the minimal number of

misclassified points is miss°.

Proof : The proof is trivial and follows from the definition of the fitness

function (Eq. 3) and the fact that miss° + aH° < miss + aH, V miss, H

(Eq. 5).

Theorem 2 : H° is the minimal number of hyperplanes required for providing

miss° number of misclassified points.

Proof : Let the converse be true, i.e., there exists some H', H' < H°, that

provides miss" number of misclassified points. In that case, the corresponding

fitness value would be miss0 + aH''. Note that now miss° + aH° > miss°+aH'.

This violates Eq. 5. Hence H' ft H°, and therefore H° is the minimal number

of hyperplanes required for providing miss0 misclassified points. Jf»

From Theorems 1 and 2, it is proved that for any value of n, the VGA-classifier

provides the minimum number of misclassified points for infinitely large number

of iterations, and it requires minimum number of hyperplanes in doing so.

5 Implementation and Results

The experimental investigation presented in this section has two parts. In the

first part, the effectiveness of VGA in automatically determining the value of H

of the classifier is demonstrated for two sets of artificial data, a speech data and

Iris data. The recognition scores of the VGA -classifier are also compared with

10

those of the fixed length GA-classifier. Secondly, we compare our concept of

using variable string lengths in GA with another similar approach (Srikanth et

al., 1995). For this purpose we have implemented their different operators in

our classification algorithm for the above mentioned four data sets.

The 2-dimensional artificial data sets, ADS 1 (Fig. 3) and ADS 2 (Fig. 4),

consist of 557 and 417 points respectively belonging to two classes. The real life

speech data, Vowel (Pal and Majumdar, 1977), consists of 871 samples having

three feature values (corresponding to the three formant frequencies) and six

classes {8, a, i,u, e, o}. Fig. 5 shows the overlapping class structures in the first

and second formant frequency plane. Iris data comprises 150 samples having

four features and three classes with 50 points in each class.

A fixed population size of 20 is chosen. Roulette wheel strategy (Goldberg,

1989) is used to implement proportional selection. As in an earlier investigation

(Bandyopadhyay et al., 1995), single point crossover is applied with a fixed

crossover probability of 0.8. A variable value of mutation probability \xm is

selected from the range [0.01, 0.333]. Initially it assumes a high value, gradually

decreasing at first, and then increasing again in the later stages of the algorithm.

200 iterations are performed with each mutation probability value. The values of

/xm, and nm2 mentioned in Section 3.3 are set to 0.1. The process is executed for a

maximum 3000 iterations. Elitism is incorporated by replacing the worst string

of the present generation by the best string seen upto the previous generation.

Performance of the VGA-classifier

Tables 1 and 2 show the number of hyperplanes HVGA as determined automati-

cally by the VGA-classifier for modeling the class boundaries of the aforesaid

four data sets when the classifier is trained with 10% and 50% samples respec-

tively. Two different values of Hmax are used for this purpose viz., Hmax = 6 and

Hmax = 10. The overall recognition scores obtained during testing of the VGA-

classifier along with their comparison with those obtained for the fixed length

version (i.e., GA-classifier) with H = 6 and 10 are also shown. (Note that

H = 6 had been found to provide, on an average, good recognition scores in ear-

lier experiments (Bandyopadhyay et al., 1995) with these data sets.) The scores

11

provided are the average values obtained over 5 different runs of the algorithms.

Table 1: HVGA and the comparative overall recognition scores (%) during testing

(when 10% of the data set is used for training and the remaining 90% for testing)

Data set VGA-classifier

Hmax = 10

Score for

GA-classifier

#=10

VGA- classifier

■H-max = 0

Score for

GA-classifier

H = 6 HvGA Score HvGA Score
ADS 1 3 95.62 84.26 4 96.21 93.22
ADS 2 6 88.16 84.04 5 88.35 88.29
Vowel 6 73.66 69.21 6 71.19 71.99
Iris 2 95.56 76.29 2 95.81 93.33

Table 2: HVGA and the comparative overall recognition scores (%) during testing

(when 50% of the data set is used for training and the remaining 50% for testing)

Data set VGA-classifier

Hmax = 10

Score for

GA-classifier

tf = 10

VGA-classifier

■H-max == O

Score for

GA-classifier

H = 6 HVGA Score HVGA Score
ADS 1 4 96.41 95.92 4 96.83 96.05
ADS 2 5 95.22 94.56 3 96.26 96.17
Vowel 6 78.26 77.77 6 77.11 76.68
Iris 2 97.60 93.33 2 97.67 97.33

The results demonstrate that in all the cases, the VGA-classifier is able to

evolve an appropriate value of HVGA from H^. In addition, its recognition

score on the test data set is found, on an average, to be higher than that of the

GA-classifier. There is only one exception to this for the Vowel data when 10%

of the samples is used for training (Table 2). In this case, Hmax = 6 does not

appear to be a high enough value for modeling the decision boundaries of Vowel

classes with VGA-classifier. This is reflected in both the tables, where the

scores for VGA-classifier with Hmax = 6 are less than those with Hmax = 10.

12

In all the cases where the number of hyperplanes for modeling the class bound-

aries is less than 6, the scores of VGA-classifier with Hmax = 6 are found to be

superior to those with Hmax = 10. This is so because with Hmax = 10, the search

space is larger as compared to that for H^ = 6, which makes it difficult for the

classifier to arrive at the optimum arrangement quickly or within the maximum

number of iterations considered here. (Note that it may have been possible to

further improve the scores and also reduce the number of hyperplanes, if more
iterations of VGA were executed.)

In general, the scores of the GA-classifier (fixed length version) with H = 10

are seen to be lower than those with H = 6 because of two reasons; overfitting of

the training data and difficulty of searching a larger space. The only exception

is with Vowel for training with 50% data where the score for H = 10 is larger

than that for H = 6. This is expected, in view of the overlapping classes of

the data set and the significantly large size of the training data. One must note

in this context that the detrimental effect of overfitting on the generalization

performance increases with decrease in the size of the training data.

As an illustration, the decision boundary obtained by the VGA-classifier for

ADS 1 when 10% of the data set is chosen for training is shown in Fig. 3.

Comparison with the Method in (Srikanth et al, 1995)

In this section an investigation is made to compare the performance of our con-

cept of using variable string length in GA with that of another similar approach

(Srikanth et al., 1995). For this purpose the operators used in (Srikanth et al.,

1995) are implemented here for the same problem of pattern classification using

hyperplanes, and the resulting performance is compared to those of our VGA-

classifier for the four data sets. Before providing the results, let us describe in

brief the method of incorporating variable string lengths in GAs as proposed in
(Srikanth et al., 1995).

The initial population is created randomly such that each string encodes the

parameters of only one hyperplane. The fitness of a string is characterized by just

the number of training points it classifies correctly, irrespective of the number

of hyperplanes encoded in it. Among the genetic operators, traditional selection

13

and mutation are used. A new form of crossover, called modulo crossover is

used which keeps the sum of the lengths of the two chromosomes constant both

before and after crossover.

Two other operators are used in conjunction with the modulo crossover for the

purpose of faster recombination and juxtaposition. These are the insertion and

deletion operators. During insertion, a portion of the genetic material from one

chromosome is inserted at a random insert-location in the other chromosome.

Conversely, during deletion, a portion of a chromosome is deleted to result in a
shorter chromosome.

Tables 3 and 4 show the comparative overall recognition scores during both

training and testing of the VGA-classifier for the above mentioned four data

sets when our approach of incorporating variable string length is compared with

that adopted in (Srikanth et al., 1995) for 10% and 50% training data respec-

tively. Other parameters are kept the same as before. Results shown are the

average values taken over five different runs. For keeping parity, the VGA of

Srikanth et al. is implemented such that no more than 10 hyperplanes are used

for modeling the decision boundary of the data sets. The table also shows the

number of hyperplanes, HVGA, generated by the two methods for one particular

run. Since the VGA of Srikanth et al. does not take care of the minimization

of the number of hyperplanes while maximizing the fitness function, the HVGA

is usually higher than that of our method.

As is evident from the tables, the performance of the classifier during training

is better for the VGA of (Srikanth et al.) than the proposed one for all the

data sets. The former, in general, uses more hyperplanes (of which many were

found to be redundant on investigation), which results in an increase in the

execution time. From the training performance, it appears that the operators

used by Srikanth et al., are better able to recombine the subsolution blocks into

larger blocks. However this is seen, in general, to result in comparatively poorer

scores during testing. To consider a typical example in one of the cases for the

Vowel data set when 10% data is used for training, 10 hyperplanes were used

to provide a training recognition score of 97.47%, while the recognition score

during testing fell to 68.95%.

14

It is also found that with increase in the size of the training data, the number

of hyperplanes for modeling the class boundaries increase for the algorithm of

Srikanth et al. Furthermore, as expected, the performance of all the classifiers

is improved with increase in the size of the training data from 10% to 50%.

Table 3: Comparative classification performance of VGA-classifier for Hmax=10

using two types of variable string lengths (when 10% of the data set is used for

training and the remaining 90% for testing)

Data set Proposed VGA VGA (Srikanth et al.)

Training

score (%)

Test

score (%)
HvGA Training

score (%)

Test

score (%)
HvGA

ADS 1 100 95.62 3 100 93.16 6

ADS 2 92.68 88.16 6 99.10 90.50 6

Vowel 80.00 73.66 6 97.36 70.22 9

Iris 100 95.56 2 100 94.98 2

Table 4: Comparative classification performance of VGA-classifier for Hmax=10

using two types of variable string lengths (when 50% of the data set is used for

training and the remaining 50% for testing)

Data set Pro)osed VGA VGA (Srikanth et al.)

Training

score (%)

Test

score (%)
HvGA Training

score (%)

Test

score (%)
HvGA

ADS 1 98.18 96.41 4 100.00 96.01 9

ADS 2 97.21 95.22 5 100.00 94.85 7

Vowel 79.73 78.26 6 85.48 78.37 9
Iris 100 97.60 2 100.00 94.67 5

6 Conclusions

The problem of fixing the appropriate value of üf a priori of the GA-classifier

15

(Bandyopadhyay et al., 1995) has been resolved by using the concept of variable

string lengths in genetic algorithm. New genetic operators are defined to deal

with the concept of variable string lengths for formulating the classifier. The fit-

ness function has been defined so that its maximization indicates minimization

of the number of misclassified samples as well as the required number of hyper-

planes. It is proved that for infinitely large number of iterations the method

is able to arrive at the optimal number of misclassified samples and will need

optimal number of hyperplanes for this purpose.

Experimental evidence for different percentages of training and test data indi-

cates that given a value of Hmax, the algorithm can not only be able to auto-

matically evolve an appropriate value of H for a given data set, but also result

in improved performance of the classifier. The method of using variable string

length in the algorithm of Srikanth et al. is also implemented in our VGA-

classifier for comparison. Since the former method does not include a factor

for reducing the number of surfaces, it is found to use more hyperplanes for

constituting the decision boundary. This results in better training performance,

mostly at the cost of reduced generalization capability. Additionally, the execu-

tion time is also more since no explicit effort is made to decrease the number of
hyperplanes.

In this connection one may also note that the genetic operators and processing

steps of the VGA described in this article entail very little disruption of those

in the conventional GA. On the other hand this is not true for the method of

Srikanth et al. which introduces two new processing steps viz., insertion and

deletion, besides using a significantly different crossover operator. Further, the

former method requires the specification of H^, whereas such a constraint is
not required for the latter one.

Acknowledgments : This work was carried out when Ms. Sanghamitra

Bandyopadhyay held the Dr. K. S. Krishnan fellowship awarded by the Depart-

ment of Atomic Energy, Govt. of India.

16

References

Bandyopadhyay, S., C. A. Murthy and S. K. Pal (1995). Pattern classification

using genetic algorithms. Patt. Recog. Lett, 16, 801-808.

Bhandari, D, C. A. Murthy and S. K. Pal (1996). Genetic Algorithm with

elitist model and its convergence. Int. J. Patt. Recog. and Art. Inteli, 10
731-747.

Gelsema, E. S., Ed. (1995). Pattern Recognition Letters. 16(8), Elsevier,
Special Issue on Genetic Algorithms.

Goldberg, D. E. (1989). Genetic Algorithms : Search, Optimization and
Machine Learning. Addison-Wesley, New York.

Goldberg, D. E, K. Deb and B. Korb (1989). Messy genetic algorithms : mo-

tivation, analysis, and first results. Complex Systems, 3, 493-530.

Harp, S. A. and T. Samad (1992). Genetic synthesis of neural network archi-

tecture. In: L. Davis, Ed., Handbook of Genetic Algorithms. New York, 202
-221.

Maniezzo, V. (1994). Genetic Evolution of the Topology and Weight Distribu-

tion of Neural Networks. IEEE Trans. Neural Networks, 5, 39-53.

Pal, S. K. and D. D. Majumdar (1977). Fuzzy sets and decision making ap-

proaches in vowel and speaker recognition. IEEE Trans. Syst., Man, Cybern.,
SMC-7, 625-629.

Pal S. K. and P. P. Wang, Eds. (1996). Genetic Algorithms for Pattern
Recognition. CRC Press, Boca Raton.

Smith S. F. (1980). A Learning System Based on Genetic Algorithms. PhD
Dissertation, University of Pittsburgh, PA.

Srikanth, R., R. George, N. Warsi, D. Prabhu, F. Petry, and B. Buckles (1995).

A variable-length genetic algorithm for clustering and classification. Patt.
Recog. Lett, 16, 789-800.

17

Figure Captions

Fig. 1 - Basic steps in GA.

Fig. 2 - Mutation operation for string i.

Fig. 3 - ADS 1 along with VGA boundary for Hmax = 10 when 10% of the data
set is used for training.

Fig. 4 - ADS 2.

Fig. 5 - Vowel Data in the Fx - F2 plane.

18

End

Begin

Begin

t=0

initialize population P(t)

compute fitness P(t)

repeat

t = t+1

select P(t) from P(t-l)

crossover P(t)

mutate P(t)

compute fitness P(t)

until termination criterion is achieved

Figure 1: Basic steps in GA

k = length of string i

Pad string i with # so that its length becomes lmax

for k = 1 to lmax do

Generate rnd, rndl and rnd2 randomly in [0,1]

if k < k do /* defined bits */

if rnd < fj,m do /* Conventional mutation */

flip bit k of string i

else /* try changing to # */

if rndl < fitni do

Set bit k of string i to #

endif

endif

else /*.k>li i.e., # */

if rnd2 < ^m2 do /* Set to defined */

Position k of string i set to 0 or 1 randomly
endif

endif

endfor

End

Figure 2: Mutation operation for string i

19

825

Xo

Llllllllll
LUlllll

1111
11111
111111
11111
11111
11111
11111-
111111
1111111
1111111
11111111
llllllllllllllli
niiiiiiiiiiinJ
liiiiiiiiiiii
liiiiiiiiii

liiiiiiiii
liiiiiiiii

mini;

li
mi

liiii
mil
mil
mil
um

min
nun

mini
1111111111111111!
1111111111111111

^•1111111111111111
11111111111111

2750

H

825

Y

222222222222222222222222
2222222222222222222222222
22222222222222222222222222

22222
22222
2222
2222
2222
2222
2222
2222
22222 .
22222
22222222222222222222222222
2222222222222222222222222
222222222222222222222222

300

liiiiiiiiiiiiiiiiiiiiin
liiiiiiiiiiiiiiiiiiiiiin
liiiiiiiiiiiiiiiiiiiiiiin
liiiiiiiiiiiiiiiiiiiiiiiiii

linn
urn
mi
mi

urn
mi
mi

mil
linn

liiiiiiiiiiiiiiiiiiiiiin11

liiiiiiiiiiiiiiiiiiiiin11

liiiiiiiiiiiiiiiiiiiiiiii

800 X
2750

r^.^

N
X
c

ZH ui d

R1r

